A Model of MULTI-VERIFIER channel e-mailing system using Steganographic scheme

D.B. Ojha¹, Abhishek Shukla², Meenu Sahni³, Nitin Pandey⁴

¹Department of Mathematics, R.K.G.I.T.U.P.T.U., Delhi-Meerut Road, Ghaziabad, U.P./201003, INDIA

²Department of Computer Application, R.K.G.I.T.U.P.T.U., Delhi-Meerut Road, Ghaziabad, U.P./201003, INDIA

³Department of Mathematics, B.I.T.U.P.T.U., Delhi-Hapur Road, Ghaziabad, U.P., INDIA

⁴Department of Information Technology, A.I.I.T., Noida, U.P., INDIA

Abstract— In this paper, we presented a model of privileged channel e-mailing system for Internet communication. It is the model of a real-life secure mailing system for any organization. In this model a sender can send a secret message even to a unacquainted person in an anonymous way. The users of this model are assumed to be may or may not be the members of a closed organization.

Keywords— Put Steganography, e-mailing system, Bilinear pairing, Bilinear pairing.

I. INTRODUCTION

Human beings have long hoped to have a technique to communicate with a distant partner anonymously but later on distinctive and must be secure. We may be able to realize this hope by using steganography.

Modern steganography has a relatively short history because people did not pay much attention to this skill until Internet security became a social concern. Most people did not know what steganography was because they did not have any means to know the meaning. Even today ordinary dictionaries do not contain the word "steganography." Books on steganography are still very few [6], [7]. The most important feature of this steganography is that it has a very large data hiding capacity [2], [5]. It normally embeds 50% or more of a container image files with information without increasing its size. Steganography can be applied to variety of information systems. Some key is used in these systems when it embeds/extracts secret data. One natural application is a secret mailing system [8] that uses a symmetric key. Another application pays attention to the nature of steganography

whereby the external data (e.g., visible image data) and the internal data (any hidden information) cannot be separated by any means. We will term this nature as an "inseparability" of the two forms of data.

In the present paper, we will show our basic model of multi-verifier channel e-mailing system for internet communication. The structure of the present paper is as follows. In Section,2, we will make a short discussion on the problems of an encrypted mailing system, section 3, gives the preliminaries. Section 4 presents model for our proposed MVCES scheme, section 5 concern with components of the model, section 6 provides the process of working.

II. PROBLEMS OF AN ENCRYPTED MAILING SYSTEM

There are two types of cryptography scheme: Symmetric key schemes and asymmetric key schemes.

In a symmetric system a message sender and receiver use a same encryption/decryption key. In this scheme, however, the sender and the receiver must negotiate on what key they are going to use before they start communication. Such a negotiation must be absolutely secret. They usually use some

second channel (e.g., fax or phone). However, the second channels may not be very secure. There is another problem in this situation in that if the sender is not acquainted with the receiver, it is difficult to start the key-negotiation in secret. Furthermore, the more secure the key system is, the more inconvenient the system usage is. An asymmetric system uses a public key and a private key system. The public key is open to the public, and it is used for message encoding when a sender is sending a message to the key owner.

III. A MODEL OF A MULTI-VERIFIER CHANNEL E-MAILING SYSTEM USING STEGANOGRAPHIC SCHEME

The authors started to develop a secure and easy-touse e-mailing system. We do not intend to develop a new

"Message reader-and-sender" "message or composer", but we are developing three system components that make a multi-verifier channel emailing system using Steganographic Scheme (MVCES,). A message sender inserts (actually, embeds) a secret message in an envelope using steganography and sends it as an e-mail attachment. The receiver receives the attached envelope and opens it to receive the message. An "envelope" in this system is actually an image file that is a container, vessel, cover, or dummy data in the terminology of steganography. This system can solve all the problems mentioned above.

The following items are the conditions we have set forth in designing the system.

1. The name of the message sender may or may not be anonymous, as depends upon their wish.

2. The message is hidden in the envelope and only the designated receiver can open it.

3. Sender can send a secret message even to an unaccustomed person.

4. It is easy to use for both sender and receiver.

A. Customization of an MVCES

I. Bilinear Pairings

Let q be a large prime with l bit length. Let G1 be a cyclic additive group generated by P , whose order

is q. Let G_2 be a cyclic multiplicative group of the same order q. A bilinear pairing is a map $\hat{e}: G_1 X G_1 \to G_2$ with the following properties:

(a)Bilinear: For any

$$aP, bP \in G_1, \hat{e}(aP, bP) = \hat{e}(P, P)^{ab}, \text{ where } a, b \in Z_q^*;$$

 $P, Q, R \in G_1, \hat{e}(P + Q, R)$
 $= \hat{e}(P, R) \cdot \hat{e}(Q, R), \hat{e}(P, Q + R)$
for any $= \hat{e}(P, Q) \cdot \hat{e}(P, R)$;

(b) Non-degenerate: Existing $P, Q \in G_1$ such that at $\hat{e}(P, Q) \neq 1$;

(c) Co computable: There is an efficient algorithm to compute $\mathscr{P}(\mathcal{P}, \mathcal{Q})$ for all $\mathcal{P}, \mathcal{Q} \in \mathcal{G}_{L}$.

II. Gap Diffie-Hellman (GDH) Group

(a) Computational Diffie-Hellman problem

(CDHP): Given $aP, bP \in G_L$. For $a^{i} \in Z_q^{i}$, to compute abP (b) Decisional Diffie-Hellman problem (DDHP): Given $P, aP, bP, cP \in G_1$ for $a, b, c \in Z_q^{*}$, to decide whether c=ab mod q, if so,(P, aP, bP, cP) is called a valid Diffie-Hellman

quaternion. *III Definition*

We call G1 a GDH group if DDHP can be solved in probabilistic polynomial time (PPT) but there is no PPT algorithm to solve CDHP on G1with nonnegligible probability. Assume there is a bilinear map \hat{e} , then (P, aP, bP, cP) is a valid Diffie-Hellman quaternion $\Leftrightarrow \hat{e}(aP, bP) = \hat{e}(P, cP)$.

IV Definition

The MVCES scheme involves a signer , a limited verifier (the designated recipient of the signature) and a certain third party (usually a Judge). It consists of six algorithms and a specific protocol, is denoted by MVCES ={Setup, Private Key Extraction, Signing, Limited Verifier Verification, Confirmation Protocol, Conversion, Public Verification}.

IV. OUR PROPOSED MVCES SCHEME

Our MVCES scheme involves a signer A, ^{*n*} limited verifier $\mathcal{B}_{1}, \mathcal{B}_{2}, \dots, \mathcal{B}_{n}$, a Judge J and a PKG.

The group G_1, G_2 , are defined as equivalent to that in section 2. Define three cryptographic hash functions H0: $H_0: \{0,1\}^* \to G_1, H_1: \{0,1\}^* \to Z_q^*, H_2: G_2 \to G_1$. The scheme is described as follows:

(a) Setup: PKG picks a random number $s \in R^{*} Z_{q}^{*}$ and sets $P_{pub} = sP$ as the public key. It publishes system parameters $cp = (G_1, G_2, q, P, \hat{e}, H_0, H_1, H_2, P_{pub})$ and keeps s secretly as the master secret key. Private Key Extraction: (b) User $U(\subseteq \{A, B_1, B_2, \dots, B_n, J\})$ submits its identity ID_u to PKG. PKG computes public key $Q_{\mu} = H_{0} (D_{\mu})$ and $\ker \underline{D}_{u} = s. Q_{u}$ privacy and sends $D_{uto} U(\in \{A, B_1, B_2, \dots, B_n, J\})$ respectively via a secure channel. (c) Signing: We use the variant [12] of the ID-based signature scheme given by Yi [10]. Given a message ^m \in $\{0,1\}^{\circ}$ signer A picks a random number $r \in \mathbb{Z}_{a}^{*}$ computes $U = rP, h = H_1(m, U), \forall = rP_{pub} + hD_a.$ Then А designates limited verifier to B_1, B_2, \dots, B_n by following computation: $T_1 = H_2\left(\delta(Q_{B_h}, V)\right), \dots, T_n = H_2\left(\delta(Q_{B_m}, V)\right), \text{ and}$ $S_1 = T_1 \oplus V, \dots, S_n = T_n \oplus V$ the resulting MVCES is $\sigma = (m_i U_i S_1 S_2 S_n)$ (d) Limited Verifier Verification: Given MVCES $\boldsymbol{\sigma} = (\boldsymbol{m}, \boldsymbol{U}, \boldsymbol{S}_1, \boldsymbol{S}_2, \boldsymbol{S}_n)$ the limited verifier $h = H_1(m, U), T_t = H_2$ $B_t(t \in \{1, 2, \dots, n\})$ computes $(\hat{\boldsymbol{e}}(\boldsymbol{D}_{\boldsymbol{B}_{t'}}\boldsymbol{U} + h\boldsymbol{Q}_{\boldsymbol{A}})), V = \boldsymbol{S}_{t} \oplus \boldsymbol{T}_{i} \text{ and } \boldsymbol{B}_{i} \text{ checks whether}$ $\partial(P,V) = \partial(P_{pub}, U + hQ_A)$ holds. The signature is valid if and only if the equation holds. Customization of an **MVCES** for а member **MVCES** takes place in the following way. MVCES first MVCES_{first} and MVCES_{second} complete up to the 4(d) step. Then **MVCES** types in his name (**NAME** (trsr) and e-mail address (e - mailfirst). Key is secretly hidden (according to a steganographic method or some other method) in $MVCES_{ftrst}$ envelope (E_{ftrst}). This Key is eventually

transferred to a message sender's MI_{second} in an invisible way. $NAME_{first}$ and $e - matl_{first}$ are printed out on the envelope surface when $MVCES_{first}$ produces E_{first} by using EF_{first} . Key is also set to EO_{first} for the initialization. $NAME_{first}$ and $e - matl_{first}$ are also inserted (actually, embedded) automatically by MI_{first} any time $MVCES_{first}$ inserts message ($MESSAGE_{first}$) in envelope (E_{second}). The embedded $NAME_{first}$ and $e - matl_{first}$ are extracted by a message receiver ($MVCES_{second}$) by EO_{second} .

V. COMPONENTS OF THE SYSTEM

MVCES is a steganography application .It makes use of the inseparability of the external and internal data. The system can be implemented differently according to different programmers or different specifications.

MVCES consists of the three following components.

- 1. First to agree with step 4.
- 2. Envelope Producer (EP)
- 3. Message Inserter (MI)
- 4. Envelope Opener (EO)

In this scheme we have two communicating parties first and second. We denote first's MVCES as MVCES_{first} So. it is described as $MVCES_{first} = EP_{first} \cdot MI_{first} \cdot EO_{first}$ EPftert is а component that produces *MIftra*'s envelope *Eftra*. Error is the envelope (actually, an image file) which is used by all, when they send a secret message to MVCES first. EV is produced from an original image **EO**. **MVCES** first can select it according to his preference. Entry has both the name and e-mail address of MVCES first on the envelope surface

(actually, the name and address are "printed" on image E_{first}). It will be placed at downloadable site. so that anyone can get it freely and use it any time.Or someone may ask MVCESfirst to send it directly to him/her. MIfter is the component to insert (i.e., embeded according to the steganographic message scheme) **MVCES**first's into another member's (e.g., MVCESsecond's envelope (Esecond) when MYCESfirst is sending a secret message (MESSAGE_{ftrat}) to MVCES_{second}. One important function of *MI*ftrat is that it detects a key (*KEY*_{second}) that has been hidden in the envelope ($\mathbb{E}_{\text{percend}}$), and uses it when inserting a message (MESSAGE int) in **E**Gritter is a component that opens Esecond (extracts) from 's "message inserted" envelop (MESSAGE_{recend}) which MVCES_{first} received from someone as an e-mail attachment. The sender (MVCES_{second}') of the secret message (MESSAGE_{second}) is not known until MVCES first opens the envelope by using ^{EO}ftra .

VI. How it works

When some member (MVCES second) wants to send a secret message (MESSAGE eccent) to another member (MVCES_{first}), and MVCES_{second} complete step 4, then MVCES_{second} gets (e.g., downloads) the MVCES_{first}'s envelope (First), and uses it to insert his message (MESSAGE second) by using MI second. When MVCES_{second} tries to insert a message, MVCES_{first}'s key is transferred to *Magazana* automatically in an invisible manner, and is actually used. MVCES first can send Eftrat MESSAGE accord directly, or ask someone else to send, it to MVCES first as an e-mail attachment. MVCES_{second} can be anonymous because no sender's information is seen on E_{first} MESSAGE_{second}. MESSAGE_{second} is hidden, and only MVCES_{first} can see it by opening the envelope. It is not a problem for MVCES_{recond} and MVCES_{first} to be acquainted or not but step 4 is required for authenticity.

REFERENCES

- A. Menezes, M. Qu, and S. Vanstone, "Key agree-ment and the need for authentication," in Proceed-ings of PKS'95, pp. 34-42, 1995.
- [2] M. Niimi, H. Noda and E. Kawaguchi :"An image embedding in image by a complexity based region segmentation method", Proceedings of International Conf. on Image Processing'97, Vol.3, pp.74-77, Santa Barbara, Oct., 1997.
- [3] E. Kawaguchi and R. O. Eason :"Principle and applications of BPCS-Steganography", Proceedings of SPIE: Multimeda Systems and Applications, Vol.3528, pp.464-463, 1998.
- [4] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Van- stone, An Efficient Protocol for Authenticated Key Agreement, Technical Report CORR98-05, Department of CO,University of Waterloo, 1998.
- [5] E. Kawaguchi, et al: "A concept of digital picture envelope for Internet communication" in Information modeling and knowledge bases X,IOS Press, pp.343-349, 1999.
- [6] Stefan Katzenbeisser and Fabien A.P. Petitcolas (eds) :"Information hiding techniques for steganography and digital watermarking", Artech House, 2000.
- [7] Neil F. Johnson, Zoran Duric and Sushil Jajodia :"Information Hiding", Kluwer Academic Publishers, 2001.
- [8] K. H. Ko, D. H. Choi, M. S. Cho, and J. W. Lee, "New signature scheme using conjugacy problem."(http://eprint.iacr.org/2002/168).
- [9] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Van-stone, "An efficient protocol for authenticated key agreement," Design, Codes and Cryptography, vol. 28, no. 2, pp. 119-134, 2003.
- [10] Eiji Kawaguchi, Hideki Noda, Michiharu Niimi and Richard O. Eason, A Model of Anonymous Covert Mailing System Using Steganographic Scheme, Information modelling and knowledge bases X,IOS Press, pp.81-85,2003.
- [11] X.Yi, An Identity-Based Signature Scheme From the Weil Pairing,IEEE communications letters 7(2),76-78, 2003.
- [12] URL http://www.know.comp.kyutech.ac.jp/BPCSe/Dpenv-e/DPENVepro_ down. html.
- [13] X.Cheng, L.Guo, X.Wang, An Identity-based Mediated Signature Scheme from Bilinear Pairing, International Journal of Network Security, 2(1):29-33, 2006. http://isrc.nchu.edu.tw/ijns.
- [14] Xiaofeng Wang, Liang Cao, Shangping Wang, Yaling Zhang, ID-Based Convertible Limited (Multi-)Verifier Signature Scheme,2008 International Conference on Computer Science and Software Engineering.774-777.